	EDITED	REVISED		APPROVED
Name:	José Luis Ceamanos	José Luis Ceamanos	María Sánchez	F. Farrer
Title:	Quality Manager	Quality Manager	Quality Deparment	General Manager
Date:	27-03-2013	27-03-2013	27-03-2013	27-03-2013

NEEDLELESS SLING ANTHROPOMETRIC STUDY

INDEX:

- 1.- Study objective
- 2.- Standards and guidance documents
- 3.- Study dates
- 4.- Persons who participate in the study
- 5.- Materials used to perform the study
- 6.- Definitions
- 7.- Description study steps and study results
- 8.- Conclusions

NEEDLELESS SLING ANTHROPOMETRIC STUDY

1.- Study objective

The main aim of this study is verify the design dimensions of the product Needleless Sling using the information available about normal anatomical variations seen in different women. The second aim of this study is compare the Needleless Sling Mesh with a standard Mini-sling Mesh.

2.- Standards and guidance documents

- Book "Occupational biomechanics" Second edition 1991
 Don B. Chaffin
 Gunnar B. J. Andersson
 A Wiley Interscience publication
- Book "Ergonomic design for people at work" First edition 1986
 Eastman Kodak Company
 A Van Nostrand Reinhold publication
- Doctoral thesis "MODELIZACIÓN VIRTUAL DE LA PELVIS FEMENINA, A PARTIR DE IMÁGENES DE RESONANCIA MAGNÉTICA".
 Salamanca University (Spain)
 Julia Martínez de Ibarreta Zorita
 2008

3.- Study dates

Starting date of test: 25-03-2013 Finishing date of test: 27-03-2013

NEEDLELESS SLING ANTHROPOMETRIC STUDY

4.- Persons who participate in the study

STUDY DIRECTOR:

Francisco Farrer is a knowledgeable and experienced professional suitable to perform the study.

Francisco Farrer is physician, mechanical engineer and he has been designing and manufacturing permanent implants for more than 20 years.

Coauthor of the book "Manual de ergonomía" Fundación Mapfre publication.

MANAGEMENT:

José Luis Ceamanos is a knowledgeable and experienced professional suitable to perform the study.

José Luis Ceamanos is mechanical engineer and he has been designing and manufacturing permanent implants for more than 10 years.

MANAGEMENT:

María Sánchez is a knowledgeable and experienced professional suitable to perform the study.

María Sánchez is Chemical engineer and she has been designing and manufacturing permanent implants for more than 4 years.

MANAGEMENT:

Felipe López is a knowledgeable and experienced professional suitable to perform the study.

Felipe López is mechanical engineer and he has been designing and manufacturing permanent implants for more than 6 years.

5.- Materials used to perform the study

- Female Pelvic Radiographies

6.- Definitions

No definitions.

NEEDLELESS SLING ANTHROPOMETRIC STUDY

7.- Description study steps and study results

- 7.1.- Dimensions of female pelvis
- 7.2.- Anatomical situation of implanted Needleless Sling
- 7.3.- Anatomical situation of Internal Obturator Muscle
- 7.4.- Verification of design dimensions of Needleless Sling Mesh
- 7.5.- Verification of design dimensions of standard Mini-sling Mesh

7.1.- Dimensions of female pelvis

To analyze the dimensions of female pelvis it has been studied two books about ergonomic:

- "Occupational biomechanics"
- "Ergonomic design for people at work"

The book "Occupational biomechanics" establishes for female sitting breadth:

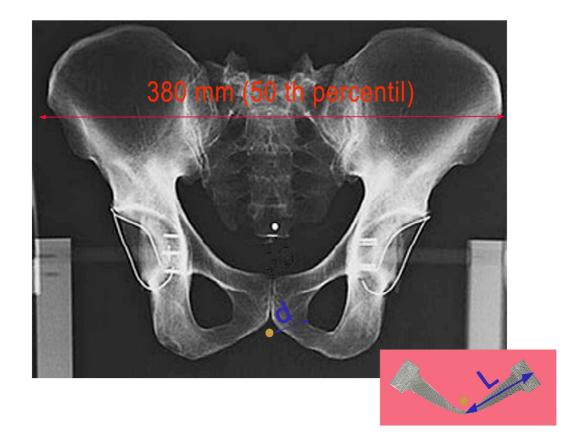
- Percentile 5th = 34.6 cm
- Percentile 95th = 43.7 cm
- Mean = 39.1 cm
- Standard deviation = 2.9 cm

The book "Ergonomic design for people at work" establishes for female hip breadth:

- Percentile $5^{th} = 32.4$ cm
- Percentile 50th = 38 cm
- Percentile 95th = 41.5 cm
- Standard deviation = 2.6 cm

According to these books it is selected the lower 5th percentile: 32.4 cm

According to these books it is selected 50th percentile: 38 cm


According to these books it is selected the bigger 95th percentile: 43.7 cm

NEEDLELESS SLING ANTHROPOMETRIC STUDY

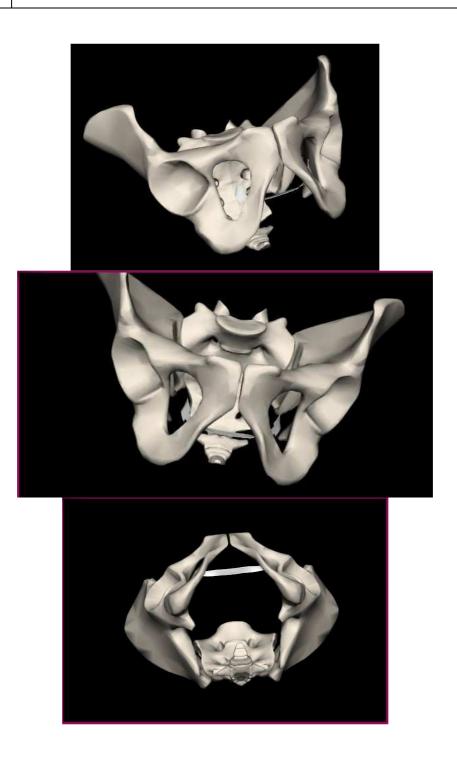
It has been selected 35 randomized female pelvic radiographies of 40-80 years old women from a hospital of Spanish Public Health. It has been checked that all these female hip width are included in the percentile described before.

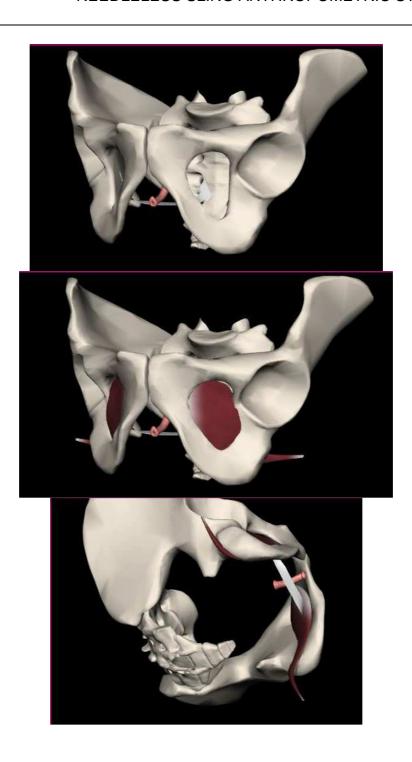
The distance between the urethra and the proximal point of the internal obturator muscle has been measured.

In the following picture it can be seen the distance measured in the radiographies and a Needleless Sling Mesh length:

Further, in this document, the distance "d" will be compared to the distance "L".

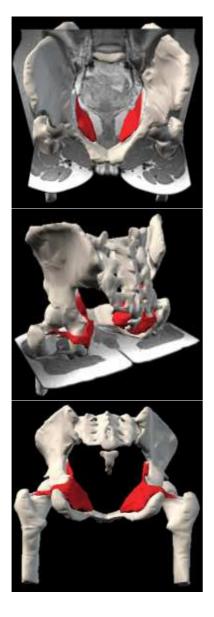
The result of this distance measurement process is:

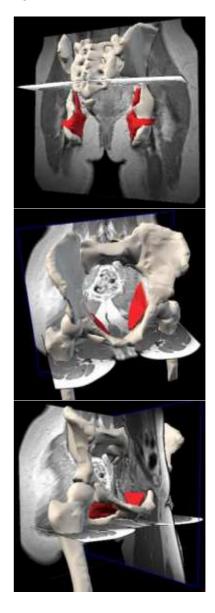

N°	d (mm)	Reference patient	
4	25	DOE 2004	
1	35	PCF-2001	
3	39 35	APC-1995	
4	35	MGA-1982 RGM-2001	
5	35	GCN-2003	
6	35	AGC-1997	
7	33	MCG-2000	
8	35	BMS-2000	
9	33	ICA-1999	
10	35	VEA-2000	
11	40	NGC-1980	
12	34	JSS-1979	
13	34	CG-1980	
14	38	MOS-1997	
15	40	EGM-1994	
16	32	JDR-1990	
17	34	MVB-1996	
18	35	ACC-1994	
19	35	PNG-1986	
20	35	HZ-1996	
21	40	GMR-1995	
22	32	PDS-1987	
23	33	IRL-1989	
24	36	SCL-1989	
25	33	MBR-1980	
26	38	MBP-1989	
27	30	TMA-1982	
28	35	CGC-1982	
29	40	AAM-1982	
30	34	MPC-1982	
31	40	MSO-1981	
32	38	EC-1997	
33	35	OG-1997	
34	36	MGB-1996	
35	35	IG-1979	
Maximum	40 mm		
Minimum	30 mm		
Mean	Mean 35.5 mm		
Standard deviation	2.55 mm		


NEEDLELESS SLING ANTHROPOMETRIC STUDY

7.2.- Anatomical situation of implanted Needleless Sling

The center of Needleless Sling Mesh is situated under the urethra and the extremes of Needleless Sling Mesh are situated in the internal obturator muscles.

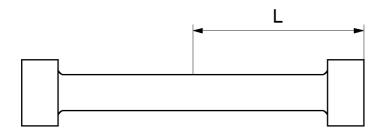




7.3.- Anatomical situation of Internal Obturator Muscle

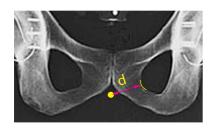
It has been studied the Doctoral thesis "MODELIZACIÓN VIRTUAL DE LA PELVIS FEMENINA, A PARTIR DE IMÁGENES DE RESONANCIA MAGNÉTICA" to situate the Internal Obturator Muscle.

This doctoral thesis shows different resonance magnetic images of the Internal Obturator Muscle:



NEEDLELESS SLING ANTHROPOMETRIC STUDY

7.4.- Verification of design dimensions of Needleless Sling Mesh


The Needleless Sling Mesh size is:

 $L = 57 \pm 2 \text{ mm}$

Maximum Needleless length = 59 mm Minimum Needleless length = 55 mm

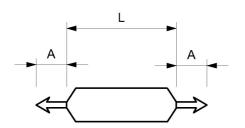
The distance between the urethra and the proximal point of the internal obturator muscle is:

 $d = 35 \pm 5 \text{ mm}$

d = Distance between the urethra and the proximal point of the internal obturator muscle

The acceptance criteria is that the minimum Needleless length is bigger than the maximum distance between the urethra and the proximal point of the internal obturator muscle:

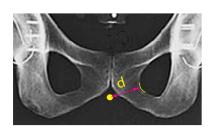
Minimum Needleless Sling length = 55 mm


Maximum distance between the urethra and the proximal point of the internal obturator muscle = 40 mm

All "d" measurements performed in the radiographies are <=40mm. Therefore, Needleless Sling comply with the acceptance criteria.

NEEDLELESS SLING ANTHROPOMETRIC STUDY

7.5.- Verification of design dimensions of standard Mini-Sling mesh


The standard Mini-sling mesh size is:

 $L = 33 \pm 1 \text{ mm}$

Maximum Mini-Sling Mesh length = 34 mm Minimum Mini-Sling Mesh length = 32 mm

The distance between the urethra and the proximal point of the internal obturator muscle is:

 $d = 35 \pm 5 \text{ mm}$

d = Distance between the urethra and the proximal point of the internal obturator muscle

The acceptance criteria is that the minimum Mini-sling Mesh length is bigger than the maximum distance between the urethra and the proximal point of the internal obturator muscle:

Minimum Mini-Sling Mesh length = 34 mm

Maximum distance between the urethra and the proximal point of the internal obturator muscle = 40 mm.

All "d" measurements performed in the radiographies are <=40mm. Therefore, Mini-Sling Mesh does not comply with the acceptance criteria.

NEEDLELESS SLING ANTHROPOMETRIC STUDY

8.- Conclusions

The anatomical variations seen in different women have been studied and it has been verified that the dimensions of Needleless Sling Mesh assures that it may be supported in all cases by the internal obturator muscles.

The Needleless Sling Mesh design dimensions satisfy the anatomical female conditions for the intended use of the product.

According to this study, it cannot be assured that the Mini-Sling Mesh design dimensions satisfy the anatomical female conditions for the intended use of the product.